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geometry. We use the supergravity description of surface operators to study the action of

the SL(2, Z) duality group of N = 4 SYM on the parameters of the surface operator, and

find that it coincides with the recent proposal by Gukov and Witten in the framework of

the gauge theory approach to the geometrical Langlands with ramification. We also show

that whenever a bubbling geometry becomes singular that the path integral description of

the corresponding surface operator also becomes singular.
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1. Introduction and summary

Gauge invariant operators play a central role in the gauge theory holographically describing

quantum gravity with AdS boundary conditions [1 – 3] , as correlation functions of gauge

invariant operators are the only observables in the boundary gauge theory. Finding the

bulk description of all gauge invariant operators is necessary in order to be able to formulate

an arbitrary bulk experiment in terms of gauge theory variables.

In this paper we provide the bulk description of a novel class of half-BPS operators

in N = 4 SYM which are supported on a surface Σ [4]. These nonlocal surface operators

OΣ are defined by quantizing N = 4 SYM in the presence of a certain codimension two

singularity for the classical fields of N = 4 SYM. The singularity characterizing such a

surface operator OΣ depends on 4M real parameters, where M is the number of U(1)’s

left unbroken by OΣ. Surface operators are a higher dimensional generalization of Wilson

and ’t Hooft operators, which are supported on curves and induce a codimension three

singularity for the classical fields appearing in the Lagrangian. In this paper we extend the

bulk description of all half-BPS Wilson loop operators found in [5] (see also1 [8 – 12]) to all

half-BPS surface operators.

We find the asymptotically AdS5×S5 solutions of Type IIB supergravity corresponding

to all half-BPS surface operators OΣ in N = 4 U(N) SYM. The topology and geometry

of the “bubbling” solution is completely determined in terms of some data, very much like

in the case studied by Lin, Lunin and Maldacena (LLM) in the context of half-BPS local

operators [13].2 In fact, we identify the system of equations determining the supergravity

solution corresponding to the half-BPS surface operators in N = 4 SYM with that obtained

by “analytic” continuation of the LLM equations [13, 16].

1The description of Wilson loops in the fundamental representation goes back to [6, 7].
2The bubbling geometry description of half-BPS Wilson loops was found in [10, 11] while that of half-

BPS domain wall operators was found in [11, 14]. For the bubbling Calabi-Yau geometries for Wilson loops

in Chern-Simons, see [15].
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Figure 1: a) The metric and five-form flux is determined once the position of the particles in X –

labeled by coordinates (~xl, yl) where y ≥ 0 — is given. The l-th particle is associated with a point

Pl ∈ X . b) The configuration corresponding to the AdS5×S5 vacuum.

The data determining the topology and geometry of a supergravity solution is charac-

terized by the position of a collection of M point particles in a three dimensional space X,

where X is a submanifold of the ten dimensional geometry. Different particle configurations

give rise to different asymptotically AdS5×S5 geometries.

Even though the choice of a particle distribution in X completely determines the geom-

etry and topology of the metric and the corresponding RR five-form field strength, further

choices have to be made to fully characterize a solution of Type IIB supergravity on this

geometry.3 Given a configuration of M particles in X, the corresponding ten dimensional

geometry develops M non-trivial disks which end on the boundary4 of AdS5×S5 on a non-

contractible S1. Since Type IIB supergravity has two two-form gauge fields, one from the

NS-NS sector and one from the RR sector, a solution of the Type IIB supergravity equa-

tions of motion is fully determined only once the holonomy of the two-forms around the

various disks is specified:

∫

Dl

BNS

2π

∫

Dl

BR

2π
l = 1, . . . ,M. (1.1)

Therefore, an asymptotically AdS5×S5 solution depends on the position of the M particles

in X — given by (~xl, yl) – and on the holonomies of the two-forms (1.1).

A precise dictionary is given between all the 4M parameters that label a half-BPS

surface operator OΣ and all the parameters describing the corresponding supergravity

solution. We show that the supergravity solution describing a half-BPS surface operator is

regular and that whenever the supergravity solution develops a singularity the N = 4 SYM

path integral description of the corresponding surface operator also develops a singularity.

We study the action of the SL(2, Z) symmetry of Type IIB string theory on the super-

gravity solutions representing the half-BPS surface operators in N = 4 SYM. By using the

proposed dictionary between the parameters of a supergravity solution and the parameters

of the corresponding surface operator, we can show that the action of S-duality induced on

3This is on top of the obvious choice of dilaton and axion, which gets identified with the complexified

coupling constant in N = 4 SYM.
4The conformal boundary in this case is AdS3×S1, where surface operators in N = 4 SYM can be

studied by specifying non-trivial boundary conditions.
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the parameters of a surface operator coincides with the recent proposal by Gukov and Wit-

ten [4] in the framework of the gauge theory approach to the geometrical Langlands [17]5

with ramification.

Whether surface operators can serve as novel order parameters in gauge theory remains

an important open question. It is our hope that the viewpoint on these operators provided

by the supergravity solutions in this paper may help shed light on this crucial question.

The plan of the rest of the paper is as follows. In section 2 we study the gauge theory

singularities corresponding to surface operators in N = 4 SYM, study the symmetries

preserved by a half-BPS surface operator and review the proposal in [4] for the action of S-

duality on the parameters that a half-BPS surface operator depends on. We also compute

the scaling weight of these operators and show that it is invariant under Montonen-Olive

duality. In section 3 we construct the solutions of Type IIB supergravity describing the

half-BPS surface operators. We identify all the parameters that a surface operator depends

on in the supergravity solution and show that the action of S-duality on surface operators

proposed in [4] follows from the action of SL(2, Z) on the classical solutions of supergravity.

The appendices contain some details omitted in the main text.

2. Surface operators in gauge theories

A surface operator OΣ is labeled by a surface Σ in R1,3 and by a conjugacy class U of

the gauge group G. The data that characterizes a surface operator OΣ, the surface Σ and

the conjugacy class U , can be identified with that of an external string used to probe the

theory. The surface Σ corresponds to the worldsheet of a string while the conjugacy class

U is associated to the Aharonov-Bohm phase acquired by a charged particle encircling the

string.

The singularity6 in the gauge field produced by a surface operator is that of a non-

abelian vortex. This singularity in the gauge field can be characterized by the phase

acquired by a charged particle circumnavigating around the string. This gives rise to a

group element7 U ⊂ U(N)

U ≡ P exp i

∮

A ⊂ U(N), (2.1)

which corresponds to the Aharonov-Bohm phase picked up by the wavefunction of the

charged particle. Since gauge transformations act by conjugation U → gUg−1, a surface

operator is labeled by a conjugacy class of the gauge group.

By performing a gauge transformation, the matrix U can be diagonalized. If we demand

that the gauge field configuration is scale invariant — so that OΣ has a well defined scaling

5See e.g. [18] for a review of the geometric Langlands program.
6Previous work involving codimension two singularities in gauge theory include [19 – 21].
7We now focus on G = U(N) as it is the relevant gauge group for describing string theory with asymp-

totically AdS5×S5 boundary conditions.
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weight — then the gauge field produced by a surface operator can then be written as

A =











α1 ⊗ 1N1
0 . . . 0

0 α2 ⊗ 1N2
. . . 0

...
...

. . .
...

0 0 . . . αM ⊗ 1NM











dθ, (2.2)

where θ is the polar angle in the R2 ⊂ R1,3 plane normal to Σ and 1n is the n-dimensional

unit matrix. We note that the matrix U takes values on the maximal torus TN = RN/ZN

of the U(N) gauge group. Therefore the parameters αi take values on a circle of unit

radius.

The surface operator corresponding to (2.2) spontaneously breaks the U(N) gauge

symmetry along Σ down to the so called Levi group L, where a group of Levi type is char-

acterized by the subgroup of U(N) that commutes with (2.2). Therefore, L =
∏M

l=1 U(Nl),

where N =
∑M

l=1 Nl.

Since the gauge group is broken down to the Levi group L =
∏M

l=1 U(Nl) along Σ,

there is a further choice [4] in the definition of OΣ consistent with the symmetries and

equations of motion. This corresponds to turning on a two dimensional θ-angle for the

unbroken U(1)’s along the string worldsheet Σ. The associated operator insertion into the

N = 4 SYM path integral is given by:

exp

(

M
∑

l=1

ηl

∫

Σ
Tr

Fl

2π

)

. (2.3)

The parameters ηi takes values in the maximal torus of the S-dual or Langlands dual gauge

group LG [4]. Therefore, since LG = U(N) for G = U(N), we have that the matrix of

θ-angles of a surface operator OΣ characterized by the Levi group L =
∏M

l=1 U(Nl) is given

by the L-invariant matrix:

η =











η1 ⊗ 1N1
0 . . . 0

0 η2 ⊗ 1N2
. . . 0

...
...

. . .
...

0 0 . . . ηM ⊗ 1NM











. (2.4)

The parameters ηi, being two dimensional θ-angles, also take values on a circle of unit

radius.

Therefore, a surface operator OΣ in pure gauge theory with Levi group L =
∏M

l=1 U(Nl)

is labeled by 2M L-invariant parameters (αl, ηl) up to the action of SM , which acts by per-

muting the different eigenvalues in (2.2) and (2.4). The operator is then defined by expand-

ing the path integral with the insertion of the operator (2.3) around the singularity (2.2),

and by integrating over connections that are smooth near Σ. In performing the path inte-

gral, we must divide [4] by the gauge transformations that take values in L =
∏M

l=1 U(Nl)

when restricted to Σ. This means that the operator becomes singular whenever the un-

broken gauge symmetry near Σ gets enhanced, corresponding to when eigenvalues in (2.2)

and (2.4) coincide.
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Surface operators in N = 4 SYM. In a gauge theory with extra classical fields like

N = 4 SYM, the surface operator OΣ may produce a singularity for the extra fields

near the location of the surface operator. The only requirement is that the singular field

configuration solves the equations of motion of the theory away8 from the surface Σ. The

global symmetries imposed on the operator OΣ determine which classical fields in the

Lagrangian develop a singularity near Σ together with the type of singularity.

A complementary viewpoint on surface operators is to add new degrees of freedom on

the surface Σ. Such an approach to surface operators in N = 4 SYM has been considered

in [22, 23] where the new degrees of freedom arise from localized open strings on a brane

intersection.

The basic effect of OΣ is to generate an Aharonov-Bohm phase corresponding to a

group element U (2.1). If we let z be the complex coordinate in the R2 ⊂ R1,3 plane

normal to Σ, the singularity in the gauge field configuration is then given by

Az =
k

∑

I=1

AI

zI
, (2.5)

where AI are constant matrices. Scale invariance of the singularity — which we are going

to impose — restricts AI = 0 for I ≥ 2.

The operator OΣ can also excite a complex scalar field Φ of N = 4 SYM near Σ

while preserving half of the Poincare supersymmetries of N = 4 SYM. Imposing that the

singularity is scale invariant9 yields

Φ =
Φ1

z
, (2.6)

where Φ1 is a constant matrix.

A surface operator OΣ is characterized by the choice of an unbroken gauge group

L ⊂ G along Σ. Correspondingly, the singularity of all the fields excited by OΣ must be

invariant under the unbroken gauge group L. For L =
∏M

l=1 U(Nl) ⊂ U(N) the singularity

in the gauge field is the non-abelian vortex configuration in (2.2) and the two dimensional

θ-angles are given by (2.4). L-invariance together with scale invariance requires that Φ

develops an L-invariant pole near Σ:

Φ =
1

z











β1 + iγ1 ⊗ 1N1
0 . . . 0

0 β2 + iγ2 ⊗ 1N2
. . . 0

...
...

. . .
...

0 0 . . . βM + iγM ⊗ 1NM











. (2.7)

Therefore, a half-BPS surface operator OΣ in N = 4 SYM with Levi group L =
∏M

l=1 U(Nl)

is labeled by 4M L-invariant parameters (αl, βl, γl, ηl) up to the action of SM , which per-

8For pure gauge theory, the field configuration in (2.2) does satisfy the Yang-Mills equation of motion

DmF mn = 0 away from Σ. Moreover, adding the two dimensional θ-angles (2.3) does not change the

equations of motion.
9If we relax the restriction of scale invariance, one can then get other supersymmetric singularities with

higher order poles Φ =
Pk

I=1

ΦI

zI
and A (2.5). The surface operators associated with these singularities may

be relevant [4] for the gauge theory approach to the study of the geometric Langlands program with wild

ramification.
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mutes the different eigenvalues in (2.2) (2.4) (2.7). The operator is defined by the path

integral of N = 4 SYM with the insertion of the operator (2.3) expanded around the L-

invariant singularities (2.2) (2.7) and by integrating over smooth fields near Σ. As in the

pure gauge theory case, we must mode out by gauge transformations that take values in

L ⊂ U(N) when restricted to Σ. The surface operator OΣ becomes singular whenever the

the parameters that label the surface operator (αl, βl, γl, ηl) for l = 1, . . . ,M are such that

they are invariant under a larger symmetry than L, the group of gauge transformations we

have to mode out when evaluating the path integral.

S-duality of surface operators. In N = 4 SYM the coupling constant combines with

the four dimensional θ-angle into a complex parameter taking values in the upper half-

plane:

τ =
θ

2π
+

4πi

g2
. (2.8)

The group of duality symmetries of N = 4 SYM is an infinite discrete subgroup of SL(2, R),

which depends on the gauge group G. For N = 4 SYM with G = U(N) the relevant

symmetry group is SL(2, Z):

M =

(

a b

c d

)

∈ SL(2, Z). (2.9)

Under S-duality τ → −1/τ and G gets mapped10 to the S-dual or Langlands dual gauge

group LG. For G = U(N) the S-dual group is LG = U(N), and SL(2, Z) is a symmetry of

the theory, which acts on the coupling of the theory by fractional linear transformations:

τ → aτ + b

cτ + d
. (2.10)

In [4], Gukov and Witten made a proposal of how S-duality acts on the parameters

(αl, βl, γl, ηl) labeling a half-BPS surface operator. The proposed action is given by [4]:

(βl, γl) → |cτ + d| (βl, γl)

(αl, ηl) → (αl, ηl)M−1. (2.11)

With the aid of this proposal, it was shown in [4] that the gauge theory approach

to the geometric Langlands program pioneered in [17] naturally extends to the geometric

Langlands program with tame ramification.

Symmetries of half-BPS surface operators in N = 4 SYM. We now describe the

unbroken symmetries of the half-BPS surface operators OΣ. These symmetries play an

important role in determining the gravitational dual description of these operators, which

we provide in the next section.

In the absence of any insertions, N = 4 SYM is invariant under the PSU(2, 2|4)
symmetry group. If we consider the surface Σ = R1,1 ⊂ R1,3, then Σ breaks the SO(2, 4)

10For G not a simply-laced group, τ → −1/nτ , where n is the ratio of the length-squared of the long and

short roots of G.
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conformal group to a subgroup. A surface operator OΣ supported on this surface inserts

into the gauge theory a static probe string. This surface is manifestly invariant under

rotations and translations in Σ and scale transformations. It is also invariant under the

action of inversion I : xµ → xµ/x2 and consequently11 invariant under special conformal

transformations in Σ. Therefore, the symmetries left unbroken by Σ = R1,1 generate

an SO(2, 2) × SO(2)23 subgroup of the SO(2, 4) conformal group, where SO(2)23 rotates

the plane transverse to Σ in R1,3. In Euclidean signature, the surface Σ =S2 preserves an

SO(1, 3)×SO(2)23 subgroup of the Euclidian conformal group. This surface can be obtained

from the surface Σ = R2 ∈ R4 by the action of a broken special conformal generator and

can also be used to construct a half-BPS surface operator OΣ in N = 4 SYM.

Since the symmetry of a surface operator with Σ = R1,1 is SO(2, 2)× SO(2)23 one can

study such an operator either by considering the gauge theory in R1,3 or in AdS3×S1, which

can be obtained from R1,3 by a conformal transformation. Studying the gauge theory in

AdS3×S1 has the advantage of making the symmetries of the surface operator manifest,

as the conformal symmetries left unbroken by the surface act by isometries on AdS3×S1.

Surface operators in R1,3 are described by a codimension two singularity while surface

operators in AdS3×S1 are described by a boundary condition on the boundary of AdS3. A

surface operator with Σ = R1,1 corresponds to a boundary condition on AdS3 in Poincare

coordinates while a surface operator on Σ =S2 corresponds to a boundary condition on

global Euclidian AdS3.

The singularity in the classical fields produced by OΣ in (2.2) (2.7) is also invariant

under SO(2, 2). The N = 4 scalar field Φ carries charge under an SO(2)R subgroup of the

SO(6) R-symmetry and is therefore SO(4) invariant. The surface operator OΣ is therefore

invariant under SO(2, 2)×SO(2)a ×SO(4), where SO(2)a is generated by the anti-diagonal

product12 of SO(2)23 × SO(2)R.

N = 4 SYM has sixteen Poincare supersymmetries and sixteen conformal supersymme-

tries, generated by ten dimensional Majorana-Weyl spinors ǫ1 and ǫ2 of opposite chirality.

As shown in the appendix A, the surface operator OΣ for Σ = R1,1 preserves half of the

Poincare and half of the conformal supesymmetries13 and is therefore half-BPS.

With the aid of these symmetries we study in the next section the gravitational de-

scription of half-BPS surface operators in N = 4 SYM.

Scaling weight of half-BPS surface operators in N = 4 SYM. Conformal symme-

try constraints the form of the OPE of the energy-energy tensor Tmn with the operators in

the theory. For a surface operator OΣ supported on Σ = R1,1, SO(2, 2)×SO(2)23 invariance

completely fixes the OPE of Tmn with OΣ:

< Tµν(x)OΣ >

< OΣ >
= h

ηµν

r4
;

< Tij(x)OΣ >

< OΣ >
=

h

r4
[4ninj − 3δij ] ; < Tµi(x)OΣ >= 0.

(2.12)

11We recall that a special conformal transformation Kµ is generated by IPµI , where Pµ is the translation

generator and I is an inversion.
12Since SO(2)a leaves Φ · z in (2.7) invariant.
13For Σ =S2, the operator is also half-BPS, but it preserves a linear combination of Poincare and special

conformal supersymmetries.
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Here xm = (xµ, xi), where xµ are coordinates along Σ and ni = xi/r, and r is the radial

coordinate in the R2 transverse to R1,1. h is the scaling weight of OΣ, which generalizes [24]

the notion of conformal dimension of local conformal fields to surface operators.

In order to calculate the scaling dimension of a half-BPS surface operator OΣ in N = 4

SYM we evaluate the classical field configuration (2.2) (2.4) (2.7) characterizing a half-BPS

surface operator on the classical energy-momentum tensor of N = 4 SYM:

Tmn =
1

g2
Tr

[

DmφDnφ − 1

2
δmn(Dφ)2 − 1

6
(DmDn − δmnD2)φ2

]

+
1

g2
Tr

[

− FmlFnl +
1

4
δmnFlpFlp

]

. (2.13)

A straightforward computation14 leads to:

h = − 16

3g2

M
∑

i=1

(β2
i + γ2

i ) = −4

3
Imτ

M
∑

i=1

(β2
i + γ2

i ). (2.14)

The action of an SL(2, Z) transformation (2.10) on the coupling constant of N = 4 SYM

implies that:

Imτ → Imτ

|cτ + d|2 . (2.15)

Combining this with the action (2.11) of Montonen-Olive duality on the parameters of the

surface operator, we find that the scaling weight (2.14) of a half-BPS surface operator OΣ

is invariant under S-duality:

h → h. (2.16)

In this respect half-BPS surface operators behave like the half-BPS local operators of

N = 4 SYM, whose conformal dimension is invariant under SL(2, Z), and unlike the half-

BPS Wilson-’t Hooft operators whose scaling weight is not S-duality invariant [24].

3. Bubbling surface operators

In this section we find the dual gravitational description of the half-BPS surface operators

OΣ described in the previous section. The bulk description is given in terms of asymp-

totically AdS5×S5 and singularity free solutions of the Type IIB supergravity equations of

motion. The data from which the solution is uniquely determined encodes the correspond-

ing data about the surface operator OΣ.

The strategy to obtain these solutions is to make an ansatz for Type IIB supergravity

which is invariant under all the symmetries preserved by the half-BPS surface operators

OΣ. As discussed in the previous section, the bosonic symmetries preserved by a half-

BPS surface operator OΣ are SO(2, 2) × SO(4) × SO(2)a. Therefore the most general

ten dimensional metric invariant under these symmetries can be constructed by fibering

14Contact terms depending on α, β, γ and proportional to the derivative of the two-dimensional δ-function

appear when evaluating the on-shelll energy-momentum tensor. It would be interesting to understand the

physical content of these contact terms.
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AdS3×S3×S1 over a three manifold X, where the symmetries act by isometries on the

fiber. The constraints imposed by unbroken supersymmetry on the ansatz are obtained by

demanding that the ansatz for the supergravity background possesses a sixteen component

Killing spinor, which means that the background solves the Killing spinor equations of Type

IIB supergravity. A solution of the Killing spinor equations and the Bianchi identity for the

five-form field strength guarantee that the full set of equations of Type IIB supergravity

are satisfied and that a half-BPS solution has been obtained.

The problem of solving the Killing spinor equations of Type IIB supergravity with

an SO(2, 2) × SO(4) × SO(2)a symmetry can be obtained by analytic continuation of the

equations studied by LLM [13, 16] , which found the supergravity solutions describing the

half-BPS local operators of N = 4 SYM, which have an SO(4)×SO(4)×R symmetry. The

equations determining the metric and five-form flux can be read from [13, 16], in which the

analytic continuation that we need to construct the gravitational description of half-BPS

surface operators OΣ was considered.

The ten dimensional metric and five-form flux is completely determined in terms of

data that needs to be specified on the three manifold X in the ten dimensional space. An

asymptotically AdS5×S5 metric is uniquely determined in terms of a function z(x1, x2, y),

where (x1, x2, y) ≡ (~x, y) are coordinates in X. The ten dimensional metric in the Einstein

frame is given by15

ds2 = y

√

2z + 1

2z − 1
ds2

AdS3
+ y

√

2z − 1

2z + 1
dΩ3 +

2y√
4z2 − 1

(dχ + V )2 +

√
4z2 − 1

2y
(dy2 + dxidxi),

(3.1)

where ds2
X = dy2 + dxidxi with y ≥ 0 and V is a one-form in X satisfying dV = 1/y ∗X dz.

AdS3 in Poincare coordinate corresponds to a surface operator on Σ = R1,1 while AdS3

in global Euclidian coordinate corresponds to a surface operator on Σ =S2. The U(1)a
symmetry acts by shifts on χ while SO(2, 2) and SO(4) act by isometries on the coordinates

of AdS3 and S3 respectively.

A non-trivial solution to the equations of motion is obtained by specifying a configura-

tion of M point-like particles in X. The data from which the solution is determined is the

“charge” Ql of the particles together with their positions (~xl, yl) in X (see figure 1). Given

a “charge” distribution, the function z(x1, x2, y) solves the following differential equation:

∂i∂iz(x1, x2, y) + y∂y

(

∂yz(x1, x2, y)

y

)

= −
M
∑

l=1

Qlδ(y − yl)δ
(2)(~x − ~xl). (3.2)

Introducing a “charge” at the point (~xl, yl) in X has the effect of shrinking16 the S1

with coordinate χ in (3.1) to zero size at that point. In order for this to occur in a smooth

fashion the magnitude of the “charge” has to be fixed [13, 16] so that Ql = 2πyl. Therefore,

15The “analytic” continuation from the bubbling geometries dual to the half-BPS local operators is given

by z → z, t → χ, y → −iy, ~x → i~x, dΩ3 → −ds2

AdS3
[13, 16].

16Near y = yl the form of the relevant part of the metric is that of the Taub-NUT space. Fixing the value

of the “charge” at y = yl by imposing regularity of the metric coincides with the usual regularity constraint

on the periodicity of the circle in Taub-NUT space.
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Figure 2: A topologically non-trivial S5 can be constructed by fibering S1×S3 over an interval

connecting the y = 0 plane and the location of the “charge” at the point Pl ∈ X with (~xl, yl)

coordinates.

the independent data characterizing the metric and five-form of the solution is the position

of the M “charges”, given by (~xl, yl).

In summary, a smooth half-BPS SO(2, 2) × SO(4) × SO(2)a invariant asymptotically

AdS5×S5 metric (3.1) solving the Type IIB supergravity equations of motion is found by

solving (3.2) subject to the boundary condition z(x1, x2, 0) = 1/2 [13, 16], so that the S3

in (3.1) shrinks in a smooth way at y = 0. The function z(x1, x2, y) is given by

z(x1, x2, y) =
1

2
+

M
∑

l=1

zl(x1, x2, y), (3.3)

where

zl(x1, x2, y) =
(~x − ~xl)

2 + y2 + y2
l

2
√

((~x − ~xl)2 + y2 + y2
l )

2 − 4y2
l y

2
− 1

2
, (3.4)

and V can be computed from z(x1, x2, y) from dV = 1/y ∗X dz. Both the metric and

five-form field strength are determined by an integer M and by (~xl, yl) for l = 1, . . . ,M .

Topology of bubbling solutions and two-form holonomies. The asymptotically

AdS5×S5 solutions constructed from (3.3) (3.4) are topologically quite rich. In particular,

a solution with M point “charges” has M topologically non-trivial S5’s. We can associate

to each point Pl ∈ X a corresponding five-sphere S5
l . S5

l can be constructed by fibering the

S1×S3 in the geometry (3.1) over a straight line between the point (~xl, 0) and the point

(~xl, yl) in X. The topology of this manifold is indeed an S5, as an S5 can be represented17

by an S1×S3 fibration over an interval where the S1 and S3 shrink to zero size at opposite

ends of the interval, which is what happens in our geometry where the S3 shrinks at (~xl, 0)

while the S1 shrinks at the other endpoint (~xl, yl).

Following [13, 16] we can now integrate the five-form flux over the topologically non-

trivial S5’s (see appendix B):

− 1

π3

∫

S5

l

F5 = y2
l . (3.5)

17This can be seen explicitly by writing dΩ5 = cos2 θdΩ3 + dθ2 + sin2 θdφ2.
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Figure 3: A disk D can be constructed by fibering S1 over an interval connecting the “charge” at

the point Pl ∈ X with (~xl, yl) coordinates and the boundary of AdS5×S5.

Since flux has to be quantized, the position in the y-axis of the l-th particle in X is

also quantized

y2
l = 4πNll

4
p Nl ∈ Z, (3.6)

where lp is the ten dimensional Planck length. For an asymptotically AdS5×S5 geometry

with radius of curvature R4 = 4πNl4p, which is dual to N = 4 U(N) SYM, we have that

the total amount of five-form flux must be N :

N =

M
∑

l=1

Nl. (3.7)

The asymptotically AdS5×S5 solutions constructed from (3.3) (3.4) also contain non-

trivial surfaces. In particular, a solution with M point “charges” has M non-trivial disks

Dl. Just as in the case of the S5’s, we can associate to each point Pl ∈ X a disk Dl.

Inspection of the asymptotic form of the metric (3.1) given in (3.3) (3.4) reveals that

the metric is conformal to AdS3×S1. This geometry on the boundary of AdS5×S5, which

is where the dual N = 4 U(N) SYM lives, is the natural background geometry on which to

study conformally invariant surface operators in N = 4 SYM. As explained in section 2, an

SO(2, 2) × SO(2)23 invariant surface operator can be defined by specifying a codimension

two singularity in R1,3 or by specifying appropriate boundary conditions for the classical

fields in the gauge theory at the boundary of AdS3×S1. In the latter formulation, the

worldsheet of the surface operator Σ is the boundary of AdS3.

Therefore, in the boundary of AdS5×S5 we have a non-contractible S1. If we fiber the

S1 parametrized by χ in (3.1) over a straight line connecting a point (~xl, yl) in X — where

the S1 shrinks to zero size — to a point in X corresponding to the boundary of AdS5×S5

— given by ~x, y → ∞ — we obtain a surface Dl. This surface is topologically a disk18 and

there are M of them for a “charge” distribution of M particles in X.

Due to the existence of the disks Di, the supergravity solution given by the metric and

five-form flux alone is not unique. Type IIB supergravity has a two-form gauge field from

the NS-NS sector and another one from the RR sector. In order to fully specify a solution

18Such disks also appear in the study of the high temperature regime of N = 4 SYM, where the bulk

geometry [25] is the AdS Schwarzschild black hole, which also has a non-contractible S1 in the boundary

which is contractible in the full geometry.
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Figure 4: An S2 can be constructed by fibering S1 over an interval connecting the “charge” at the

point Pl ∈ X with a different “charge” at point Pm ∈ X .

of Type IIB supergravity in the bubbling geometry (3.1) we must complement the metric

and the five-form with the integral of the two-forms around the disks19

αl = −
∫

Dl

BNS

2π
ηl =

∫

Dl

BR

2π
l = 1, . . . ,M, (3.8)

where we have used notation conducive to the later comparison with the parameters

characterizing a half-BPS surface operator OΣ. Since both BNS and BR are invariant

under large gauge transformations, the parameters (αl, ηl) take values on a circle of unit

radius.

Apart from the M disks Dl, the bubbling geometry constructed from (3.3) (3.4) also

has topologically non-trivial S2’s. One can construct an S2 by fibering the S1 in (3.1) over

a straight line connecting the points Pl and Pm in X. Since the S1 shrinks to zero size in

a smooth manner at the endpoints we obtain an S2. Therefore, to every pair of “charges”

in X, characterized by different points Pl and Pm in X, we can construct a corresponding

S2, which we label by S2
l,m. The integral of BNS and BR over S2

l,m do not give rise to new

parameters, since [S2
l,m] = [Dl] − [Dm] in homology, and the periods can be determined

from (3.8).

Bubbling geometries as surface operators. As we discussed in section 2, a surface

operator OΣ is characterized by an unbroken gauge group L ∈ U(N) along together with

4M L-invariant parameters (αl, βl, γl, ηl). On the other hand, the Type IIB supergravity

solutions we have described depend on the positions (~xl, yl) of M “charged” particles in X

and the two-form holonomies:
∫

Dl

BNS

2π

∫

Dl

BR

2π
. (3.9)

We now establish an explicit dictionary between the parameters in gauge theory and the

parameters in supergravity.

For illustration purposes, it is convenient to start by considering the half-BPS surface

operator OΣ with the largest Levi group L, which is L = U(N) for G = U(N). U(N)

invariance requires that the singularity in the fields produced by OΣ take values in the

19The overall signs in the identification are fixed by demanding consistent action of S-duality of N = 4

SYM with that of Type IIB supergravity.
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center of U(N). Therefore, the gauge field and scalar field produced by OΣ is given by

A = α01Ndθ

Φ =
1

z
(β0 + iγ0)1N , (3.10)

where 1N is the identity matrix. We can also turn a two-dimensional θ-angle (2.3) for the

overall U(1), so that:

η = η01N . (3.11)

We now identify this operator with the supergravity solution obtained by having a

single point “charge” source in X (see figure 1b). If we let the position of the “charge” be

(~x0, y0) then

z(x1, x2, y) =
(~x − ~x0)

2 + y2 + y2
0

2
√

((~x − ~x0)2 + y2 + y2
0)

2 − 4y2
0y

2

VI = −ǫIJ
(xJ − xJ

0 )((~x − ~x0)
2 + y2 − y2

0)

2(~x − ~x0)2
√

((~x − ~x0)2 + y2 + y2
0)

2 − 4y2
0y

2
, (3.12)

where V = VIdxI . The metric (3.1) obtained using (3.12) is the metric of AdS5×S5. This

can be seen by the following change of variables [16]

x1 − x1
0 + i(x2 − x2

0) = rei(φ−ψ)

r = y0 sinhu sin θ

y = y0 cosh u cos θ

χ =
1

2
(ψ + φ), (3.13)

which yields the AdS5×S5 metric with AdS5 foliated by AdS3×S1 slices:

ds2 = y0

[

(cosh2 uds2
AdS3

+ du2 + sinh2 udψ2) + (cos2 θdΩ3 + dθ2 + sin2 θdφ2)
]

. (3.14)

We note that the U(1)a symmetry of the metric (3.1) — which acts by shifts on χ —

identifies via (3.13) an SO(2)R subgroup of the the SO(6) symmetry of the S5, acting by

shifts on φ, with an SO(2)23 subgroup of the SO(2, 4) isometry group of AdS5, acting by

opposite shifts on ψ. This is precisely the same combination of generators discussed in

section 2 that is preserved by a half-BPS surface operator OΣ in N = 4 SYM.

The radius of curvature of AdS5×S5 in (3.14) is given by R4 = y2
0 . Therefore using

that R4 = 4πNl4p, where N is the rank of the N = 4 YM theory, we have that

N =
y2
0

4πl4p
, (3.15)

and the position of the “charge” in y gets identified with the rank of the unbroken gauge

group and is therefore quantized.

The residue of the pole in Φ (3.10) gets identified with the position of the “charge” in

the ~x-plane. It follows from (3.1) that the coordinates ~x and y have dimensions of length2.
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Therefore, we identify the residue of the pole of Φ with the position of the “charge” in the

~x-plane in X via:

(β0, γ0) =
~x0

l2s
. (3.16)

Unlike the position in y, the position in ~x is not quantized.

The remaining parameters of the surface operator OΣ with U(N) Levi group — given

by (α0, η0) — get identified with the holonomy of the two-forms of Type IIB supergravity

over D

α0 = −
∫

D

BNS

2π
η0 =

∫

D

BR

2π
, (3.17)

where D is the disk ending on the AdS5×S5 boundary on the S1. This identification

properly accounts for the correct periodicity of these parameters, which take values on a

circle of unit radius.

The path integral which defines a half-BPS surface operator OΣ when L = U(N)

is never singular as the gauge symmetry cannot be further enhanced by changing the

parameters (α0, β0, γ0, η0) of the surface operator. Correspondingly, the dual supergravity

solution with one “charge” also never acquires a singularity by changing the parameters of

the solution.

Let’s now consider the most general half-BPS surface operator OΣ. First we need

to characterize the operator by its Levi group, which for a U(N) gauge group takes the

form
∏M

l=1 U(Nl) with N =
∑M

l=1 Nl = N . The operator then depends on 4M L-invariant

parameters (αl, βl, γl, ηl) for l = 1. . . . ,M up to the action of SM , which acts by permuting

the parameters.

The corresponding supergravity solution associated to such an operator is given by the

metric (3.1). The number of unbroken gauge group factors — given by the integer M —

corresponds to the number of point “charges” in (3.2). For M > 1, the metric that follows

from (3.3) (3.4) is AdS5×S5 only asymptotically and not globally.

The rank of the various gauge group factors in the Levi group
∏M

l=1 U(Nl) — given by

the integers Nl — correspond to the position of the “charges” along y ∈ X, given by the

coordinates yl. The precise identification follows from (3.5) (3.6):

Nl =
y2

l

4πl4p
l = 1, . . . ,M. (3.18)

Nl also corresponds to the amount of five-form flux over S5
l , the S5 associated with the l-th

point charge:

Nl = − 1

4π4l4p

∫

S5

l

F5 l = 1, . . . ,M. (3.19)

This identification quantizes the y coordinate in X into lp size bits. Thus length is

quantized as opposed to area, which is what happens for the geometry dual to the half-BPS

local operators [13, 16], where it can be interpreted as the quantization of phase space in

the boundary gauge theory.

A half-BPS surface operator OΣ develops a pole for the scalar field Φ (2.7). The

pole is characterized by its residue, which is given by 2M real parameters (βl, γl). These
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parameters are identified with the position of the M “charges” in the ~x-plane in X via:

(βl, γl) =
~xl

l2s
. (3.20)

All these parameters take values on the real line.

The remaining parameters characterizing a half-BPS surface operator OΣ are the pe-

riodic variables (αl, ηl), which determine the holonomy produced by OΣ and the corre-

sponding two-dimensional θ-angles. These parameters get identified with the holonomy of

the two-forms of Type IIB supergravity over the M non-trivial disks Dl that the geometry

generates in the presence of M “charges” in X:

αl = −
∫

Dl

BNS

2π

ηl =

∫

Dl

BR

2π
. (3.21)

The identification respects the periodicity of (αl, ηl), which in supergravity arises from

the invariance of BNS and BR under large gauge transformations.20

We have given a complete dictionary between all the parameters that a half-BPS

surface operator in N = 4 SYM depends on and all the parameters in the corresponding

bubbling geometry. We note that a surface operator OΣ depends on a set of parameters

up to the action of the permutation group SM on the parameters, which is part of the

U(N) gauge symmetry. The corresponding statement in supergravity is that the solution

dual to a surface operator is invariant under the action of SM , which acts by permuting

the “charges” in X.

The supergravity solution is regular as long as the “charges” do not collide. A singu-

larity arises whenever two point “charges” in X coincide (see figure 1):

(~xl, yl) → (~xm, ym) for l 6= m. (3.22)

Whenever this occurs, there is a reduction in the number of independent disks since (see

figure 3):

Dl → Dm for l 6= m, (3.23)

and therefore
∫

Dl

BNS

2π
→

∫

Dm

BNS

2π
∫

Dl

BR

2π
→

∫

Dm

BR

2π
for l 6= m. (3.24)

In this limit of parameter space the non-trivial S2 connecting the points Pl and Pm in X

shrinks to zero size as [S2
l,m] = [Dl] − [Dm] → 0, and the geometry becomes singular.

20Since the gauge invariant variables are ei
R

D

B

2π .
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By using the dictionary developed in this paper, such a singular geometry corresponds

to a limit when two of each of the set of parameters (αl, βl, γl, ηl) defining a half-BPS

surface operator OΣ become equal:

αl → αm, βl → βm, γl → γm, ηl → ηm for l 6= m. (3.25)

In this limit the unbroken gauge group preserved by the surface operator OΣ is en-

hanced to L′ from the original Levi group
∏M

l=1 U(Nl), where L ⊂ L′. As explained in

section 2 the path integral from which OΣ is defined becomes singular.

In summary, we have found the description of all half-BPS surface operators OΣ in

N = 4 SYM in terms of solutions of Type IIB supergravity. The asymptotically AdS5×S5

solutions are regular and when they develop a singularity then the corresponding operator

also becomes singular.

S-duality of surface operators from type IIB supergravity The group of dualities

of N = 4 SYM acts non-trivially [4] on surface operators OΣ (see discussion in section 2).

For G = U(N) the duality group is SL(2, Z) and its proposed action on the parameters on

which OΣ depends on is [4]:

(βl, γl) → |cτ + d| (βl, γl)

(αl, ηl) → (αl, ηl)M−1, (3.26)

where M is an SL(2, Z) matrix
(

a b

c d

)

. (3.27)

We now reproduce21 this transformation law by studying the action of the SL(2, Z)

subgroup of the SL(2, R) classical symmetry of Type IIB supergravity, which is in fact the

appropriate symmetry group of Type IIB string theory. For that we need to analyze the

action of S-duality on our bubbling geometries.

SL(2, Z) acts on the complex scalar τ = C0 + ie−φ of Type IIB supergravity in the

familiar fashion

τ → aτ + b

cτ + d
, (3.28)

where as usual τ gets identified with the complexified coupling constant of N = 4 SYM (2.8).

SL(2, Z) also rotates the two-form gauge fields22 of Type IIB supergravity
(

BNS

BR

)

→
(

d c

b a

)(

BNS

BR

)

, (3.29)

while leaving the metric in the Einstein frame and the five-form flux invariant.

Given that the metric in (3.1) is in the Einstein frame, SL(2, Z) acts trivially on the

coordinates (~x, y). Nevertheless, since

ls = g−1/4
s lp with gs = eφ (3.30)

21If we apply the same idea to the LLM geometries dual to half-BPS local operators in [13], we conclude

that the half-BPS local operators are invariant under S-duality.
22See e.g. [26, 27].
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the string scale transforms under SL(2, Z) as follows:

l2s → l2s
|cτ + d| . (3.31)

Therefore, under S-duality:
~xl

l2s
→ |cτ + d| ~xl

l2s
. (3.32)

Given our dictionary in (3.20), we find that the surface operator parameters (βl, γl) trans-

form as in (3.26), agreeing with the proposal in [4].

The identification of the rest of the parameters is (3.21):

αl = −
∫

Dl

BNS

2π

ηl =

∫

Dl

BR

2π
. (3.33)

Using the action of SL(2, Z) on the two-forms (3.29) and the identification (3.33), it fol-

lows from a straightforward manipulation that the surface operator paramaters (αl, ηl)

transform as in (3.26), agreeing with the proposal in [4].
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A. Supersymmetry of surface operator in N=4 SYM

In this appendix we study the Poincare and conformal supersymmetries preserved by a

surface operator in N=4 SYM supported on R1,1. These symmetries are generated by

ten dimensional Majorana-Weyl spinors ǫ1 and ǫ2 of opposite chirality. We determine

the supersymmetries left unbroken by a surface operator by studying the supersymmetry

variation of the gaugino in the presence of the surface operator singularity in (2.2) (2.7).

The metric is given by:

ds2 = −(dx0)2 + (dx1)2 + (dx2)2 + (dx3)2 = −(dx0)2 + (dx1)2 + 2dzdz̄. (A.1)

where z = 1√
2
(x2 + ix3) = |z|eiθ, while the singularity in the fields is

Φω = Φω̄ =
1√
2
(Φ8 + iΦ9) =

β + iγ

z

A = αdθ, F = dA = 2παδD, (A.2)
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where [α, β] = [α, γ] = [β, γ] = 0 and δD = d(dθ) is a two form delta function. The relevant

Γ-matrices are

Γz =
1√
2
(Γ2 + iΓ3)

Γz̄ =
1√
2
(Γ2 − iΓ3)

{Γz,Γz̄} = 2. (A.3)

A Poincare supersymmetry transformation is given by

δλ =

(

1

2
FµνΓµν + ∇µΦiΓ

µi +
i

2
[Φi,Φj]Γ

ij

)

ǫ1 (A.4)

where µ runs from 0 to 3 and i runs from 4 to 9, while a superconformal supersymmetry

transformation is given by

δλ =

[(

1

2
FµνΓµν + ∇µΦiΓ

µi +
i

2
[Φi,Φj]Γ

ij

)

xσΓσ − 2ΦiΓ
i

]

ǫ2 (A.5)

From (A.4), it follows that the unbroken Poincare supersymmetries are given by:

Γz̄ωǫ1 = 0 ⇔ Γ2389ǫ1 = −ǫ1. (A.6)

The unbroken superconformal supersymmetries are given by:

[(

−β + iγ

z2
Γzω̄ − β − iγ

z̄2
Γz̄ω

)

(x0Γ
0 + x1Γ

1 + zΓz̄ + z̄Γz) − 2ΦωΓω − 2Φω̄Γω̄

]

ǫ2 = 0.

(A.7)

From the terms proportional to x0 and x1, we find that the unbroken superconformal

supersymmetries are given by:

Γzω̄ǫ2 = 0 ⇔ Γ2389ǫ2 = −ǫ2. (A.8)

The rest of the conditions

[Γz̄Γω̄Γz]ǫ2 = 0, (A.9)

are automatically satisfied once (A.8) is imposed.

We conclude that the singularity (2.2) (2.7) is half-BPS and that the preserved su-

persymmetry is generated by ǫ1 and ǫ2 subject o the constraints Γ2389ǫ1 = −ǫ1 and

Γ2389ǫ2 = −ǫ2.

By acting with a broken special conformal transformation on Σ = R2 ⊂ R4 to get a

surface operator supported on Σ =S2, one can show following [28] that such an operator

also preserves half of the thirty-two supersymmetries, but are now generated by a linear

combination of the Poincare and special conformal supersymmetries.
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B. Five form flux

In this appendix, we calculate (3.5) explicitly to evaluate the flux over a non-trivial S5.

The five-form flux is [13, 16]

F5 = −1

4

{

d

[

y2 2z + 1

2z − 1
(dχ + V )

]

+ y3 ∗3 d

(

z + 1
2

y2

)}

∧ dV olAdS3

−1

4

{

d

[

y2 2z − 1

2z + 1
(dχ + V )

]

+ y3 ∗3 d

(

z − 1
2

y2

)}

∧ dΩ3 (B.1)

The five-cycle S5
l in the bubbling geometry is spanned by coordinates Ω3, χ and y. Then

the integration is:

− 1

4π4l4p

∫

S5

l

F5 =
1

16π4l4p

∫

d

[

y2 2z − 1

2z + 1
dχ

]

∧ dΩ3 =
y2

l

4πl4p
= N. (B.2)
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